Skip to main content

What is MCP?

The Model Context Protocol (MCP) is an open standard developed by Anthropic that enables seamless integration between AI applications and external data sources and tools.
MCP provides a standardized way for AI models like Claude to interact with various services, databases, and APIs through a unified interface.

Learn More About MCP

Read Anthropic’s official announcement and deep dive into the Model Context Protocol architecture and use cases.

MCP Architecture

MCP defines a client-server architecture where:
  • MCP Clients (AI applications like Claude Desktop, IDEs)
  • MCP Servers (Services that expose tools, resources, and prompts)
  • Transport Layer (stdio, HTTP, or WebSocket)

MCP Server Structure

Basic Server Implementation

Python Server
from mcp.server import Server
from mcp.types import Tool, TextContent

# Initialize MCP server

server = Server("weather-server")

@server.list_tools()
async def list_tools():
"""List available tools"""
return [
Tool(
name="get_weather",
description="Get current weather for a city",
inputSchema={
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "City name"
},
"units": {
"type": "string",
"enum": ["metric", "imperial"],
"description": "Temperature units"
}
},
"required": ["city"]
}
)
]

@server.call_tool()
async def call_tool(name: str, arguments: dict):
"""Execute tool"""
if name == "get_weather":
city = arguments["city"]
units = arguments.get("units", "metric")

        # Fetch weather data
        weather_data = await fetch_weather(city, units)

        return [
            TextContent(
                type="text",
                text=f"Weather in {city}: {weather_data}"
            )
        ]

# Run server

if **name** == "**main**":
server.run()

MCP Server Components

1. Tools

Tools are functions that AI can call to perform actions:
{
  "name": "search_database",
  "description": "Search the customer database",
  "inputSchema": {
    "type": "object",
    "properties": {
      "query": {
        "type": "string",
        "description": "Search query"
      },
      "limit": {
        "type": "integer",
        "minimum": 1,
        "maximum": 100,
        "default": 10
      },
      "filters": {
        "type": "object",
        "properties": {
          "status": {
            "type": "string",
            "enum": ["active", "inactive"]
          },
          "created_after": {
            "type": "string",
            "format": "date-time"
          }
        }
      }
    },
    "required": ["query"]
  }
}
{
  "content": [
    {
      "type": "text",
      "text": "Found 5 customers matching 'tech startup':\n\n1. Acme Corp (ID: 123)\n2. Tech Solutions Inc (ID: 456)\n..."
    },
    {
      "type": "resource",
      "resource": {
        "uri": "database://customers/123",
        "name": "Acme Corp",
        "mimeType": "application/json"
      }
    }
  ],
  "isError": false
}
{
  "content": [
    {
      "type": "text",
      "text": "Error: Database connection timeout. Please try again later."
    }
  ],
  "isError": true
}

2. Resources

Resources provide access to data:

Static Resources

Fixed data like configuration files

Dynamic Resources

Live data from databases or APIs

File Resources

File system access

Network Resources

External API data

3. Prompts

Reusable prompt templates:
@server.list_prompts()
async def list_prompts():
    return [
        Prompt(
            name="customer_analysis",
            description="Analyze customer behavior and trends",
            arguments=[
                PromptArgument(
                    name="customer_id",
                    description="Customer ID to analyze",
                    required=True
                ),
                PromptArgument(
                    name="time_period",
                    description="Analysis time period (days)",
                    required=False
                )
            ]
        )
    ]

@server.get_prompt()
async def get_prompt(name: str, arguments: dict):
    if name == "customer_analysis":
        customer_id = arguments["customer_id"]
        time_period = arguments.get("time_period", 30)

        # Fetch customer data
        customer_data = await get_customer_data(customer_id, time_period)

        prompt_text = f"""
        Analyze the following customer data for customer #{customer_id}
        over the last {time_period} days:

        {customer_data}

        Please provide:
        1. Key behavioral patterns
        2. Purchase trends
        3. Engagement metrics
        4. Recommendations for retention
        """

        return GetPromptResult(
            description=f"Customer analysis for #{customer_id}",
            messages=[
                PromptMessage(
                    role="user",
                    content=TextContent(
                        type="text",
                        text=prompt_text
                    )
                )
            ]
        )

MCP Server Best Practices

Clear Tool Names - Use descriptive, action-oriented names (e.g., get_weather, search_database)
Comprehensive Schemas - Define all parameters with descriptions and constraints
Error Handling - Return helpful error messages with context
Rate Limiting - Implement rate limits to prevent abuse
Logging - Log all tool invocations for debugging and analytics
Security - Validate inputs, sanitize outputs, use authentication
Documentation - Provide clear descriptions for all tools and resources
Testing - Write comprehensive tests for all functionality

SuperBox MCP Integration

SuperBox provides a complete platform for publishing, discovering, and running MCP servers:
1

Create MCP Server

Develop your MCP server using any supported language:
superbox init my-mcp-server --template python
2

Test Locally

Test your server with the SuperBox playground:
superbox run my-mcp-server
3

Security Scan

Automatic 5-step security pipeline:
  • SonarQube: Code quality
  • Bandit: Python security
  • GitGuardian: Secrets detection
  • Semgrep: Vulnerability scanning
  • OWASP: Dependency check
4

Publish to SuperBox

Deploy to SuperBox marketplace:
superbox push
5

Sandboxed Execution

Your MCP server runs in isolated AWS Lambda environments with:
  • Network isolation
  • Resource limits
  • Timeout protection
  • Automatic scaling

Example MCP Servers

Weather MCP

Real-time weather data from multiple APIs Tools: - get_current_weather - get_forecast - get_historical_data

Database MCP

Safe database querying interface Tools: - search_records - get_statistics
  • export_data

File System MCP

Secure file operations Tools: - read_file - list_directory - search_files

API Integration MCP

Connect to external services Tools: - call_api - transform_data - cache_results

Protocol Specification

Full MCP specification: modelcontextprotocol.io

JSON-RPC 2.0

MCP uses JSON-RPC 2.0 for communication:
{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "tools/list",
  "params": {}
}

Supported Transports

Standard input/output for local processes:
{
  "mcpServers": {
    "weather": {
      "command": "python",
      "args": ["-m", "weather_mcp"]
    }
  }
}

Next Steps