What is MCP?
The Model Context Protocol (MCP) is an open standard developed by Anthropic that enables seamless integration between AI applications and external data sources and tools.
MCP provides a standardized way for AI models like Claude to interact with
various services, databases, and APIs through a unified interface.
Learn More About MCP Read Anthropic’s official announcement and deep dive into the Model Context
Protocol architecture and use cases.
MCP Architecture
Protocol Overview
Core Concepts
Communication Flow
MCP defines a client-server architecture where:
MCP Clients (AI applications like Claude Desktop, IDEs)
MCP Servers (Services that expose tools, resources, and prompts)
Transport Layer (stdio, HTTP, or WebSocket)
MCP servers can expose three main primitives:
Tools Functions that the AI can invoke to perform actions
Resources Data sources that the AI can read from
Prompts Pre-built prompt templates
{
"jsonrpc" : "2.0" ,
"method" : "tools/call" ,
"params" : {
"name" : "get_weather" ,
"arguments" : {
"city" : "San Francisco" ,
"units" : "metric"
}
},
"id" : 1
}
Response: {
"jsonrpc" : "2.0" ,
"result" : {
"content" : [
{
"type" : "text" ,
"text" : "The current weather in San Francisco is 18°C with clear skies."
}
]
},
"id" : 1
}
MCP Server Structure
Basic Server Implementation
Python Server
from mcp.server import Server
from mcp.types import Tool, TextContent
# Initialize MCP server
server = Server( "weather-server" )
@server.list_tools ()
async def list_tools ():
"""List available tools"""
return [
Tool(
name = "get_weather" ,
description = "Get current weather for a city" ,
inputSchema = {
"type" : "object" ,
"properties" : {
"city" : {
"type" : "string" ,
"description" : "City name"
},
"units" : {
"type" : "string" ,
"enum" : [ "metric" , "imperial" ],
"description" : "Temperature units"
}
},
"required" : [ "city" ]
}
)
]
@server.call_tool ()
async def call_tool ( name : str , arguments : dict ):
"""Execute tool"""
if name == "get_weather" :
city = arguments[ "city" ]
units = arguments.get( "units" , "metric" )
# Fetch weather data
weather_data = await fetch_weather(city, units)
return [
TextContent(
type = "text" ,
text = f "Weather in { city } : { weather_data } "
)
]
# Run server
if ** name ** == "**main**" :
server.run()
MCP Server Components
Tools are functions that AI can call to perform actions:
{
"content" : [
{
"type" : "text" ,
"text" : "Error: Database connection timeout. Please try again later."
}
],
"isError" : true
}
2. Resources
Resources provide access to data:
Resource Types
Resource Example
Static Resources Fixed data like configuration files
Dynamic Resources Live data from databases or APIs
File Resources File system access
Network Resources External API data
@server.list_resources ()
async def list_resources ():
return [
Resource(
uri = "file:///data/customers.json" ,
name = "Customer Database" ,
mimeType = "application/json" ,
description = "All customer records"
),
Resource(
uri = "api://crm/contacts" ,
name = "CRM Contacts" ,
mimeType = "application/json" ,
description = "Live contact data from CRM"
)
]
@server.read_resource ()
async def read_resource ( uri : str ):
if uri == "file:///data/customers.json" :
data = await read_file( "/data/customers.json" )
return [
TextContent(
type = "text" ,
text = data
)
]
elif uri == "api://crm/contacts" :
contacts = await fetch_crm_contacts()
return [
TextContent(
type = "text" ,
text = json.dumps(contacts, indent = 2 )
)
]
3. Prompts
Reusable prompt templates:
@server.list_prompts ()
async def list_prompts ():
return [
Prompt(
name = "customer_analysis" ,
description = "Analyze customer behavior and trends" ,
arguments = [
PromptArgument(
name = "customer_id" ,
description = "Customer ID to analyze" ,
required = True
),
PromptArgument(
name = "time_period" ,
description = "Analysis time period (days)" ,
required = False
)
]
)
]
@server.get_prompt ()
async def get_prompt ( name : str , arguments : dict ):
if name == "customer_analysis" :
customer_id = arguments[ "customer_id" ]
time_period = arguments.get( "time_period" , 30 )
# Fetch customer data
customer_data = await get_customer_data(customer_id, time_period)
prompt_text = f """
Analyze the following customer data for customer # { customer_id }
over the last { time_period } days:
{ customer_data }
Please provide:
1. Key behavioral patterns
2. Purchase trends
3. Engagement metrics
4. Recommendations for retention
"""
return GetPromptResult(
description = f "Customer analysis for # { customer_id } " ,
messages = [
PromptMessage(
role = "user" ,
content = TextContent(
type = "text" ,
text = prompt_text
)
)
]
)
MCP Server Best Practices
Clear Tool Names - Use descriptive, action-oriented names (e.g.,
get_weather, search_database)
Comprehensive Schemas - Define all parameters with descriptions and
constraints
Error Handling - Return helpful error messages with context
Rate Limiting - Implement rate limits to prevent abuse
Logging - Log all tool invocations for debugging and analytics
Security - Validate inputs, sanitize outputs, use authentication
Documentation - Provide clear descriptions for all tools and resources
Testing - Write comprehensive tests for all functionality
SuperBox MCP Integration
SuperBox provides a complete platform for publishing, discovering, and running MCP servers:
Create MCP Server
Develop your MCP server using any supported language: superbox init my-mcp-server --template python
Test Locally
Test your server with the SuperBox playground: superbox run my-mcp-server
Security Scan
Automatic 5-step security pipeline:
SonarQube: Code quality
Bandit: Python security
GitGuardian: Secrets detection
Semgrep: Vulnerability scanning
OWASP: Dependency check
Publish to SuperBox
Deploy to SuperBox marketplace:
Sandboxed Execution
Your MCP server runs in isolated AWS Lambda environments with:
Network isolation
Resource limits
Timeout protection
Automatic scaling
Example MCP Servers
Weather MCP Real-time weather data from multiple APIs Tools: - get_current_weather -
get_forecast - get_historical_data
Database MCP Safe database querying interface Tools: - search_records - get_statistics
File System MCP Secure file operations Tools: - read_file - list_directory - search_files
API Integration MCP Connect to external services Tools: - call_api - transform_data -
cache_results
Protocol Specification
JSON-RPC 2.0
MCP uses JSON-RPC 2.0 for communication:
{
"jsonrpc" : "2.0" ,
"id" : 1 ,
"method" : "tools/list" ,
"params" : {}
}
Supported Transports
Standard input/output for local processes: {
"mcpServers" : {
"weather" : {
"command" : "python" ,
"args" : [ "-m" , "weather_mcp" ]
}
}
}
HTTP with Server-Sent Events: {
"mcpServers" : {
"weather" : {
"url" : "https://api.weather-mcp.com"
}
}
}
Bidirectional WebSocket connection: {
"mcpServers" : {
"weather" : {
"url" : "wss://api.weather-mcp.com/ws"
}
}
}
Next Steps